Shape-constrained Symbolic Regression – Improving Extrapolation with Prior Knowledge

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimensionally Constrained Symbolic Regression

We describe dimensionally constrained symbolic regression which has been developed for mass measurement in certain classes of events in high-energy physics (HEP). With symbolic regression, we can derive equations that are well known in HEP. However, in problems with large number of variables, we find that by constraining the terms allowed in the symbolic regression, convergence behavior is impr...

متن کامل

Knowledge Discovery through Symbolic Regression with HeuristicLab

This contribution describes how symbolic regression can be used for knowledge discovery with the open-source software HeuristicLab. HeuristicLab includes a large set of algorithms and problems for combinatorial optimization and for regression and classification, including symbolic regression with genetic programming. It provides a rich GUI to analyze and compare algorithms and identified models...

متن کامل

Using Genetic Programming with Prior Formula Knowledge to Solve Symbolic Regression Problem

A researcher can infer mathematical expressions of functions quickly by using his professional knowledge (called Prior Knowledge). But the results he finds may be biased and restricted to his research field due to limitation of his knowledge. In contrast, Genetic Programming method can discover fitted mathematical expressions from the huge search space through running evolutionary algorithms. A...

متن کامل

Constrained Inverse Regression for Incorporating Prior Information

Inverse regression methods facilitate dimension-reduction analyses of high-dimensional data by extracting a small number of factors that are linear combinations of the original predictor variables. But the estimated factors may not lend themselves readily to interpretation consistent with prior information. Our approach to solving this problem is to first incorporate prior information via theor...

متن کامل

Motivated Support Vector Regression with Structural Prior Knowledge

It’s known that incorporating prior knowledge into support vector regression (SVR) can help to improve the approximation performance. Most of researches are concerned with the incorporation of knowledge in form of numerical relationships. Little work, however, has been done to incorporate the prior knowledge on the structural relationships among the variables (referred as to Structural Prior Kn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Evolutionary Computation

سال: 2021

ISSN: 1530-9304

DOI: 10.1162/evco_a_00294